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ABSTRACT

A procedure for predicting underground cavity motions resulting from
surface air-blast loading is developed on the basis of a dynamic-reciprocity
principle for a nonhomogeneous, anisotropic, linear, viscoelastic half
space, A computer program for evaluating the integral equations for this
medium is presented., Experimental measurements from the RAINIER
Eventof Operation PLUMBBOB are used to postulate cavity motions arising
from a surface burst at the RAINIER site, The effects of variations in the
cavity pressure signature, number of measured ground motions, and
instrumentation errors are examined, Recommendations are made for
experimental programs to obtain needed additional data, and, in general,

to ascertain the applicability of the reciprocity to soils,
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PART 1 -- SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

I. INTRODUCTION

The central aim of this investigation was to develop a procedure in
which ground motion data obtained during an underground explosion could
be used to predict the underground motion that would result if there was a
surface explosion at that site, Part ] summarizes the work performed

during the study, while Part II presents the details.

During this study, a digital-computer program was developed which
makes it possible to compute cavity deformations caused by a specified
pressure loading on the surface of the ground. By using this program
the practicality of the proposed procedure is demonstrated and no insur-

mountable problems are anticipated in its use,

The ground motion and surface pressure pulse data needed to make
the cavity motion calculations have been taken during numerous tests and
there are no difficulties involved in using these data in the digital compu-
tations, Nevertheless, there still remains one important question to be
answered; that is, the degree of applicability of this procedure to soil
media. This can only be determined when the necessary data become
available., Now it is true that soil motions due to a transient loading, say
at point C , have been measured, say at point S, However, to test the
dynamic-reciprocity theorem in a soil, a reciprocal measurement must

be nade. That is, the motion at C due to a transient loading at S should




be measured, Such data are not available at present, and suggestions for

a test program to gather the necessary data are outlined at the end of

this report,

The specific objectives of the present studies were formulated

and the study initiated, These four objectives were:

1)

4)

Transform the general convolution integrals in
the reciprocity theorem to forms that are
applicable to the specified problem and that
are suitable for digital computation; develop

a practical procedure for data reduction,

Investigate supplementary techniques for
relating average radial displacements to
probable displacement variations around

the cavity,

Evaluate the limitations and possibilities of
the basic concept of dynamic reciprocity to
the specified problem; delineate possible
extensions to nonlinear and dissipative
continuous systems, and to other problems

in ground shock propagation.

Develop criteria for the types and accuracy
of instrumentation needed for field measure-
ment; establish reasonable estimates of

the number and distribution of measurement

stations; investigate interpolation procedures



for estimating ground displacement

between stations,

Briefly, the work undertaken to meet the specific objectives
was as follows: First, the dynamic-reciprocity relation which is
pertinent to the problem was transformed to a form suitable for digital
computations, This relation was programmed and checked out by com-
paring the computed results against some known solutions for beams,
Calculations of cavity displacements caused by a postulated nuclear
surface detonation were then performed. Ground-motion velocity
data taken during the underground PLUMBBOB series of tests were
used in these calculations. The underground cavity pfessure which
caused these ground motions was not available; hence a set of hypo-
thetical cavity-pressure pulse curves were used. Various computer
runs were made to investigate the effect on the computed cavity
deformations caused by various cavity pressure pulse curves, The
influence of errors in the ground-station velocity measurements was

also investigated,

Since the cavity displacement calculations provide only the average
radial displacement, the relation between the average, distortional, and
rigid-body radial displacements was investigated next. Published theo-
retical results from a related problem were used to estimate the relative
magnitude of these radial displacements, The related problem was solved
by Baron and Parnes (Reference 6) and dealt with the response of a cylin-
drical cavity during the passage of a plane compressional wave, They

determined the radial and tangential velocities of the cavity boundary as a



function of time for several points around the periphery of the cavity in
nondimensional variables. From these published results the average,
rigid body, and distortional displacement time-histories for several points
around the cavity were determined. This problem differed from the spheri-
cal cavity problem considered in this study in two respects. First, the
medium was assumed to be homogeneous, isotropic, nondissipative, and
linearly elastic; and second, the cavity was cylindrical rather than spheri-
cal. In an effort to remove the objection of a different geometry, the
analogous problem for a spherical cavity was examined and its solution
formulated. However, the calculations of the cavity displacements re-
quired the development of another computer program. Since no numerical
computations were performed the derivation of this formal solution to the
spherical cavity problem was not included in this report but has been docu-

mented in STL Report EM 13-7.

II. DIGITAL PROGRAM DEVELOPMENT

A special form of the general dynamic-reciprocity theoremn. (derived
in the Appendix), which has been transformed and programmed on the IBM

7090 so that calculations of cavity motions could be made is

t ‘ t
j;) ‘[S pc(t - T)uC(T)dSCdT = L j; ps(t - T)us‘(T)dSsdt (1)
c s

where p and u represent pressure and displacement time-histories and sub-
scripts ¢ and s refer to cavity and surface. This convolution integral re-
lation is integrated over the cavity area SC and the surface area S5 as well
as over time. In the applications of this integral relation it is assumed

that the surface responses u caused by the cavity pressure P have been




measured and the cavity deformation u caused by the specified surface
pressure p_ is to be determined. Upon examination of the type of ground
motion data taken during underground explosions, it appeared that ground
velocity data ils or acceleration data 'ﬁs were more readily obtainable than
ground displacement data. It was decided, therefore, totransform (1) into
a form where the digital computations of the unknown cavity deformation
uc(t) depended upon the ground velocities \'15, and the two pressure pulses
P, and Py In the computational scheme adopted, the space integration
over the ground sutface was replaced by a summation over n stations by
assuming that the variations of the integrands over each station were solely
time variations. Clearly, this requires that the spacing between stations
be small enough so that the variations of Py and b’s from station to station
are not too large. From a computational standpoint this does not place any
serious restrictions upon the cavity displacement calculations since the
computer is capable of handling a large number of stations. Generally,

the upper limit to the number of surface stations will be governed by the
number of velocity time-histories that can be recorded during the under-
ground detonation. However, from the data to be ‘presented presently, it
appears that the number of surface stations required are within the capa-

bilities of the usual instrumentation procedures.

Before the digital program could be used to make cavity deformation
calculations it was necessary to obtain surface and cavity pressures and
ground velocity time-histories. In the calculations it was assumed that
the surface pressures were caused by a surface nuclear explosion. Once
a given yield and ground zero were selected, Brode's theoretical pressure
pulse was determined for each of the n stations (References 2 and 14).
Actually, this was found to be a rather tedious task when a large number
of stations used, and therefore, an alternate method for introducing
the pressure pulse data was devised. The digital program was modified
so that an arbitrary pressure pulse curve at each station can be input.

Or alternatively, the weapon yield and the distance from ground zero to
each of the n stations are specified, then the computer generates the

appropriate Brode pressure pulse curve.




III. CAVITY DISPLACEMENT CALCULATIONS

A search for data on ground motion caused by underground detonation
showed that a few measurements had been made on a large number of tests,
but there were no tests in which surface motions had been measured at a
large number of stations along several lines radiating out from surface
ground zero. The most complete ground motion data found were ground-
velocity data taken during the Rainier test in the PLUMBBOB series.
During this test, ground velocities were measured at seven different sta-
tions ranging from ground zero out to a range of 2340 feet. The locations
of the underground detonation and respective ground stations for these data
are shown in figure 1. The stations were very nearly on a single radial line

emanating from surface ground zero.

STATION 1 2 6 7

4so'f *
} ]
e 650"
900" [+ 900

Figure 1. Location of Surface Stations with Respect
to-Underground Detonation-— Rainier Test

Since no ground-motiondata were available to indicate the nonisotropic
nature of the medium where these data were taken, it was tacitly assumed
that the medium was isotropic, and therefore, these measured motions

were identical with those along any other radial line.

The ground-motion velocity time-histories at each of these stations are
shown in figures 7 and 8 in Part II. Unfortunately, no data were available
on the cavity pressure P, that produced the ground velocities, and there-
fore, a theoretical pressure pulse was used. For the calculations, it was

assumed that the cavity pressure could be expressed in the form

p(t) = Ae™% + Be P | (2)




The peak pressure, i.e., A + B, was selected from the theoretical peak

pressure curve for various cavity radii presented in figure 8 of Reference
14 for an assumed effective radius of about 10 feet. This corresponds to

a pressure of about 100, 000 atmospheres. The remaining three constants
in cquation (2) were arbitrarily selected. These parameters were changed
in some of the computations to investigate the influence of variations in the

peak cavity pressure and decay rate.

Numerous computations were made using the ground velocity data and
cavity pressure pulses for a surface nuclear explosion having its ground
zero at one of two locations. The first location was taken as directly above
the underground cavity, and therefore, coincident with ground zero for the
underground explosion. This case is referred to as the direct-hit example.
The second location for ground zero was 1880 feet away from the ground
zero for the underground explosion. This case is referred to as the non-
direct-hit example. The conclusions drawn from these computations, and
to be presented subsequently, are not meant to be interpreted as conclusions
that are valid in general, for clearly, they are strongly dependent upon the
data used. Nevertheless, the calculations are probably indicative of a
typical situation and should provide a guide to the influence of the various
parameters. In the calculations it was assumed that the medium was iso-
tropic and, therefore, the measured velocity time-history at any station is
the same for any other station at the same distance from surface ground

zero.
A. INFLUENCE OF CAVITY PRESSURE PULSE SIGNATURE

The first.parameter studied is the influence of various cavity pressure
pulse time-histories upon the computed cavity displacements. This is an
important parameter to investigate for there is difficulty in measuring this
pressure pulse and theoretical computations are strongly dependent upon
the properties of the explosive material, cavity size, and the simplifying
assumptions. For example, see the theoretical pressure pulse curves

computed in Reference 3.

Figure 3 shows the computed cavity displacements for the direct-hit
example for the three cavity pressure pulses having peak pressures of
100,000, 81,625, and 61,000 atmospheres shown in figure 2. The pressure

pulse curves were selected by initially taking the pressure pulse to be
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CAVITY PRESSURE, p_ (ATMOSPHERES)

2 2.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
TIME (SECONDS)

Figure 2. Assumed Cavity Pressures During the Rainier Shot
in the PLUMBBOB Series
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p(t) = 75,000 ¢~ t 425,000 e (3)

and then selecting new values of A, B, a, and B subject to the condition that

00
[ pC(t) dt
o

is a constant. Note that in figure 3, the peak cavity displacements are 1.2,
0.75, 0.55 ft for the three pressure pulses, P.1’ Pe7r Pege having peak
pressures of 100,000, 81,625, and 61,000 atmospheres respectively. These
data show that if there were indeed as much uncertainty in the pressure
pulse curve as between these extremes, there would be an uncertainty of
approximately 2 to | in the computed maximum cavity displacement. This
suggests that when this procedure is applied to predict the cavity displace-
ment caused by a surface pressure, efforts should be taken to properly

define the cavity pressures.

From figare 2 note that P.7 is a larger pressure over the first 1.6
seconds except for the initial instant, while figure 3 shows that this cavity
pressure pulse curve leads to the smallest predicted cavity displacement.
This indicates that if one uses too large a cavity pressure, the computed
cavity displacements will be too small. Obviously, it is not necessary to
make cavity deformation calculations to note this fact for it is evident
from equation (1). If one assumes Py and u_ are known functions of time,
then the right side of equation (1) is some fixed time function. Thus, if on
the left side P is too large, then u_ will be too .small accordingly. Physi-
cally, what this means is that if a small cavity pressure produces a large
surface motion, then similarly a small surface pressure produces a large
cavity motion. These comments suggest that if there is any uncertainty in
the cavity pressure pulse, it is conservative to use a cavity pressure curve

that is too small.
B. INFLUENCE OF NUMBER OF SURFACE MEASUREMENTS

Several calculations were made to investigate the effect of the
number of surface stations used in the computations upon the computed
cavity deformations. One such calculation was made by using every other

surface station for the same direct-hit example used above. Adopting the

10




station numbering system shown infigure lfor the direct-hit example, calcu-
lations were made by using the four stations 1, 3, 5, and 7 and the
results were compared with those when all seven stations were used. The
results of this computation are shown in figure 4. This figure shows that
the predicted cavity deformations were larger when four stations were used.
This is primarily a consequence of the manner of adjusting the surface
areas in the two sets of computations. In the four station computations, the
area associated with station 1 was larger than when all seven stations were
used. Now, since the surface pressure and velocity were the largest at
station 1, the contribution of station 1l to the total cavity deformation is
large. Therefore, increasing the area of station 1 increases the predicted
cavity response. This example provides an illustration of a case where the
spatial variation of the time functions was too large between stations, at
least, for those stations closest to ground zero. This does not necessarily
infer that four stations are insufficient, but it does show that if fewer sta-
tions are used and the maximum pressure and velocity occurring within the
area associated with the respective station are assumed to act over the en-

tire area, then a conservative estimate of cavity motion will be obtained.

In an effort to provide additional information regarding the number of
surface stations and the effect of instrumentation errors at these stations,
some influence functions were computed for both the direct-hit and nondirect-
hit examples. These influence functions were defined as the cavity response
caused by the surface pressures acting on each station individually. In the
results summarized here, the cavity pressure pulse given in equation (3)

was used.

The station numbering system shown in figure 1 is again used for the
direct-hit example. Figure 5 shows the maximum cavity displacement
produced by the pressures acting on each of the seven stations. Probably
it should be mentioned that these maximum cavity displacements are pro-
portional to the area lumped at each surface station as well as to the meas-
ured ground velocity and prescribed overpressure. For example, the area
lumped at station 7 was about three times that lumped at station 6. This
larger area associated with station 7 caused the influence of station 7 to
be greater than station 6. However, on an influence per unit area basis,
the influence of successive stations would clearly decrease as the distance

from the cavity to the station increased.
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Figure 5 is developed from the cavity motion data presented in

figures 14 and 15 of Part II. Note that figure 5 shows that the absolute
value of the maximum cavity displacement is 1.21 feet while the maxi-
mum value from the first station alone is 0.78 foot. Since the maximum
cavity response caused by each surface station does not occur at the same
instant of time, the maximum cavity 1'éspox1se is not obtained by adding the
maximum values shown in figure 5. From figure 3, it is noted that the
maximum cavity displacement occurs at 0.76 second for the pressure
pulse curve P.p Figure 6 shows the individual contribution of each
station to this maximum cavity displacement at this instant of time. In
this figure, it is noted that the contribution from stations 4, 5, 6, and 7
are small compared to the first three stations. In fact, if only the first
three stations are used, the computed cavity displacement is -1.14 feet,
rather than the value of -1.21 feet when all seven stations are used. In
such a case, the computed error using the first three stations would be
about 6 percent. Recall that when the four stations 1, 3, 5, and 7 were
used, the error was approximately 70 percent. Thus, reasonable pre-
dictions of cavity displacements can be made with a limited number of
stations; however, the stations must be selected judiciously as indicated

later on. ”

For the nondirect-hit example, the station numbering system is shown
in figure 7. More stations are requiredfor the nond.rect-hitexample thanfor -
the direct-hit example because of the loss of some symmetry. Figure 8
shows the maximum cavity displacement caused by each individual station when
considered separately. Indicated in this figure is a resultant maximum
cavity displacement of 0.26 foot when the properly phased contribution
from all stations is summed. Figure 9 shows the actual contribution of
each station to this maximum cavity displacement. Since the cavity motion
caused by pressures acting on some stations begins after the maximum
cavity displacement i.s reached, their contributions to the maximum are
zero. From figure 9, it is noted that if only the six stations, 1, la, lb,
2, 2a, and2b had been used in the analysis, the predicted maximum cavity
displacement would have been -0.268 foot, which is very close to the

value of -0.260 foot, when all surface stations are considered.
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Figure 7. Lumped Stations for the Nondirect-Hit Example
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In both the direct-hit and nondirect-hit calculations, a fairly accurate
cavity displacement can be predicted using a limited number of surface
stations, provided that they are properly selected. The most important
stations are those stations where the major portion of the energy from the
nuclear surface detonation enters the ground, i.e., in the vicinity of ground
zlcro. In the calculations shown here for an isotropic medium and for the
direct-hit example reasonably accurate cavity displacements were predicted
using only threc stations when full advantage of the problem symmetry is
used. For the nondirect-hit example, some symmetry was lost and fairly

accurate cavity displacements were predicted using six stations.
C. INFLUENCE OF ERRORS IN SURFACE MEASUREMENTS

Errors in measured surface velocities cause a corresponding error in
the computed cavity dci’o'rmations. For example, since a linear system is
assumed, say a 10 percent error in every measured ground velocity pro-
duces a 10 percent error in the computed cavity deformation. However,
instrumentation errors may be randomly distributed so that the cancelling
effects prod:ce a smaller crror. Figure 5 can be used to estimate the
errvor in the predicted cavity deformation for a spc"cifiod error in either the
surface pressure or ground velocity at any station. Clearly, the largest
error in predicted cavity deformation results from an error in the meas-
urements taken at station 1. Figure 5> shows that the ratio of the contri-
bution from station | to the contribution from all the stations is approxi-
mately 0.67/1.21 =0.55. Thercefore, if say the surface velocity data for
station 1 had a constant’ 10 percent errvor, this would produce an crror of
5.5 percent in the predicted cavity deformation. Computations of this type
led to the conclusion that crrors in the computed cavity deformation caused
by instrumental crrors in the data taken at the ground surface stations are
secondary when compared with the errors caused by the theoretical approxi-
mation to the actual pressure puise curve, and the crrors resulting by re-
placing the space-time integration of the convolution integral over the sur-
face by summation of time integration at each of the n surface stations.
These counclusions indicate that the typical accuracy obtainable in ground
motion and pressure measurements is entirely satisfactory. The accuracy
of cavity motion predictions can be improved more eifectively by increas-
ing the number of surface measurements rather than by improving the

accuracy of the measurements made at a given sct stations.
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D. GROUND MOTIONS BETWEEN MEASURED POINTS

The possibility was examined of interpolating between stations to
determine the ground motions at some intermediate stations. Here the
hope was that fewer ground motion measurements could be made and the
accuracy of the cavity computations improved by increasing the number of
stations used in the analysis. However, it was soon apparent that no ac- .
curacy could be gained by this method and one might just as well use those
\

stations for which data were available.

Iv. CAVITY DISPLACEMENTS— AVERAGE, DISTORTION,
AND TRANSLATION

Assume ground surface velocity data are obtained from a symmetric
pressure pulse having a zero resultant force vacting on an underground
cavity. If these data are used to compute cavity deformations caused by
a pressure loading on the ground surface, only average cavity deformations
can be determined by the dynamic reciprocity procedure. The fact that the
procedure provides no information regarding the cavity distortion and rigid-
body displacement is not a limitation of the dynamic;,-reciprocity procedure,
but rather emphasizes the fact that the cavity pressure pulse, which pro-
vided the free-surface velocity data, was symmetric and had a zero re- ‘
sultant force. In fact, if a nonsymmetric pressure pulse having a resultant
force can be produced inside the cavity, and if the spatial and time distri- .
bution of this pressure pulse is known, then thicse pressure pulse data and
the associated ground velocity data can be used to determine the total cavity
displacement that would result from a specified ground-surface pressure
loading. It is quite likely, however, that when this dynamic-reciprocity
procedure is applied the cavity pressure pulse will be symmetric and have
a zero resultant force. For this reason, theoretical computations were
conducted to see how the average displacement was related to the distortion
and rigid-body displacement. In this study use was made of some results

presented by Baron and Parnes in Reference 6.

Baron and Parnes determine the motion of the cylindrical cavity in the
infinite elastic medium illustrated in figure 10 during the passage of a plane
compressional wave. Presented in their work are plots of the nondimen- .

sional radial velocities [w/(ccp/p)] and tangential velocity [v/(crcp/p)—_], as

20



functions of nendimensional tixﬁe (cpt/Za) for seven different points around
the cavity, where w is the radial velocity, v the tangential velocity, o the
stress intensity of the wave, p the shear modulus of the medium, c¢_ the
propagation velocity of the dilatational waves, a the radius of the cylindri-

cal cavity and t the time.

‘ nnm{ﬁvw

SHOCK WAVE FRONT

SHOCK WAVE
VELOCITY = <5

Figure 10. Plane Compressional Wave Engulfing a
Cylindrical Cavity in an Infinite Medium

The detailed work presented in Part II consisted of integrating the
cavity velocity components to obtain the displacement components Uc (6,1)
and VC (6,t). Next, the displacements were expanded into a Fourier series
to determine individual contributions of the average, distortional, and rigid-
body motion to the total radial displacement. This was done by representing

the cavity displacements by the equations

0
UC(E), t) = ao(t) + Z an(t) cos n0
n=1
o
VC(O, t) = nzzl bn(t) sin n0

so that the component displacements are given by

average radial displacement = ao(t)

al(t) - bl(t)
rigid-body radial displacement ———— ——— COs ¢

a (t) - b,(t)
U_(9,8) - a(t) - ——5——— cos

1

distortional radial displacement
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The results of these computations showed that the maximum displace-
ments occurred at 0 = 0. Figure 11 shows a plot of the three displacements
at 8 = 0, as a function of time. From this figure it is noted that the average
displacement and distortional displacement are roughly of the same magni-
tude. This suggests that, if only the average radial displacernent is com-
puted, the total elastic displacement will be obtained approximately by
multiplying by a factor of two. Note that after the wave front has propagated
one diameter beyond the cavity (nondimensional time equal to two), the
cavity translational motion increases nearly at a constant rate. This con-
tinuing translational motion is a consequence of the assumption made in this
problem that the compressive stress is continually applied. Thus, as the
compressive wave front advances with a constant velocity, the entire medium
moves with a constant velocity without acceleration. However, such rigid-
body translations without distortion of the cavity shape do not cause any

stress variations.

V. SUMMARY

During this study, a dynamic-reciprocity procedure was devised and a
digital-computer program devecloped whereby ground-motion data taken
during an explosion in an underground cavity could be used to predict cavity
motions which would be caused by a specified pressure pulse loading on the
ground surface. This digital program was so arranged that the data re-
yuired to compute cavity motion are the pressure pulse time-history inside
the cavity, the corresponding normal velocities of the ground surface, and
the prescribed pressure loading on the ground surface. Given these data,
the computer evaluates the average radial cavity deformation time-history
that the specified surface pressure loading induces. If a nuclear detonation
is prescribed on the surface, the yield of the weapon and the distance from
ground zero to each of several surface stations can be specified and the
computer will generate the approximate Brode pressure pulse curve as is
necessary during the cavity calculations. This procedure is rigorously
valid in nonisotropic, linear viscoelastic media, and, therefore, can be
used for linear dissipative media. Even though the program was written

to use ground velocities, acceleration measurements can be used.
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The required number of ground motion measurements that must be
recorded so as to apply the dynamic-reciprocity procedure is very much
dependent upon the nature of the medium. For example, if the medium is
isotropic, measurements along one radial line are sufficient. Whereas, if
the medium is nonisotropic measurements should be made along three or
four radial lines. The number of measurements required along any radial
line should be at least 3, but from 4 to 7 or more are recommended. With
the data used in this study, it was noted that the error in the calculated
average cavity displacement was about 50 percent using only one surface
measurement and about 13 percent using three surface measurements,
when compared to the calculated average cavity displacement using seven

surface measurements.

Cavity distortions can be estimated from the average cavity displace-
ment using the results from the plane wave diffraction problem. Roughly,
the maximum distortion is about equal to the average displacement. An
alternative and more satisfactory method of estimating the cavity distor-
tion and also translation can be made using experimentally determined

transfer func.ions.

V. RECOMMENDATIONS

This study demonstrated that a practical procedure utilizing dynamic-
reciprocity relations can be used to predict the average cavity displace-
ments caused by a prescribed pressure 'nading acting on the surface, pro-
viding experimental measurements of ¢round motions caused by a known
average pressure acting inside the cavity are available. Although the
average radial displacement is vital to the designer of underground struc-
tures, the distortional and translational displacements are also important.
Theoretically, dynamic reciprocity provides a means for predicting total
cavity motion, including translation and distortion as well as the average
displacement caused by a hypothetical pressure acting on the surface of the
ground. However, such predictions can be made only if one knows the spa-
tial distribution of the pressure time-histories acting around the cavity ’
while the ground motion data are being collected. If only the average pres-
sure time-history acting in the cavity is known, then only the average
radial displacement caused by a prescribed surface loading can be predicted.
Generally the pressure distribution around the cavity will be nearly uniform

unless some clever experimental procedure is adopted.
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It is clear that requiring detailed cavity pressure loading imposes a

severe constraint upon the test procedure followed when collecting the ground
motion data. For this reason, it is desirable to remove this requirement

by adopting an alternate procedure. A more practical procedure is to use
the combined experimental-theoretical procedure which only requires the
average cavity pressure, for predicting the average radial displacement
caused by a prescribed ground pressure loading. Then, using the average
displacement, along with some additional experimental data, estimate the
distortion and translation of the cavity. To use this alternate procedure,
data are required which show the relation among the cavity average, dis-
tortional, and rigid-body displacements. Such data can be obtained most

conveniently on a linear medium using scaled models.

In the appendix, the dynamic reciprocity theorem is derived and shown
to be valid for a nonhomogeneous viscoelastic medium provided the stress-
strain relationship is linear. At the present time proof does not exist of
the validity of the reciprocity relation in a nonlinear medium. Neither is
there a proof to the contrary. Lamb, in Reference 16, states on the basis
of Lagrange's results that the restriction to linearity- may not be necessary,

but he did not elaborate on this point, and a proof is lacking.

Clearly, in many applications of dynamic reciprocity one must deal
with nonlinear media. For example, while rocks may behave elastically,
soils generally do not. It is worthwhile, therefore, to find ou.t experi-
mentally the degree of applicability of thc uynamic-reciprocity relation-

ship to such media.

It is recommended that a simple and definitive experimental program
be initiated that will fulfill the following two objectives:

1) Gather sufficient test data to determine the relation among
cavity translation, distortion, and average displacement
in a linear medium.

2) Gather the necessary data to determine the degree of appli-
cability of dynamic reciprocity in a nonlinear medium such
as a soil.

The first objective will provide the transfer-function type of data required
for estimating cavity distortions and rigid-body translations from the aver-
age displacement for a linear medium. The second objective will make it
possible to estimate the errors in the predicted cavity displacements caused

by nonlinear effects.
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PART II -- ANALYTICAL RESULTS

1. TRANSFORMATION OF THE RECIPROCITY RELATION

A special form of the dynamic-reciprocity relation, equation (16) in

the Appendix, which is suitable for our purposes is given by

t t
JSCL P (% t- TIu (x, T) drds_ = fss L P (% t-7) us(x, 7) drds (1)

where p is the pressure, u is the displacement, S is the area, x repre-
sents the space coordinates, and t and T are time coordinates. The
subscripts s and ¢ represent surface and cavity respectively., The
problem becomes one of solving equation (1) for the unknown cavity dis-
placement u caused by a specified surface pressure loading Py when the
normal surface motion u has been measured due to a known cavity pres-
sure p . To solve this integral equation. several simplifying
assumptions are introduced. First, it is realized that the ground surface
measurements will only be known at a finite number of surface stations
so that space integration over the ground surface must be replaced by a
summation over the n measured stations., It is assumed that at each of
these n stations, both the pressure and ground motion are the same over
the entire station area at any instant of time. It is further assumed that
the internal pressure p  acting on the cavity wall is uniformally distri-
buted and simply varies with time. Under this assumption u, becomes
the average radial cavity displacement produced by the ground surface
pressure loading Py It is also assumed that the variation of the cavity
area with time can be neglected and that this area can be taken as a con-

stant. These assumptions permit equation (1) to be rewritten as

t t
SC J'O Pc(t - T)uc('r) dT = g San'o psn(t - 'r)usn('r) dT (2)

where SC represents the cavity area, SSn represents the ground surface
area of the nth station and the summation is to extend over the n ground
surface stations. To cast equation (2) into a form suitable for
programming on the IBM 7090, it is necessary that several algebraic

manipulations be performed.
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Due to the symmetry property of the convolution integral, equation (2)

may be rewritten as

-t t
Sc Jo pc(t - uc(T) dr = Er; Ssn jo psn(T) U‘sn(t - T dT (3)

After equation (3) is differentiated with respect to time t, it becomes

[,

SC J'o pc(t - T) uc('r) dTt + Scpc(o)uc(t)
- t . .| —m .
= Ssnj Psn(’r) u (- T) dT% + Scn psn(t) usn‘(o) (4)
n . ) ' n

where dots denote differentiation with respect to the independent variable
of the functions. It is assumed that the initial displacements at the ground
surface u_ (0) are zero so that the last term in eguation {4) vanishes.
Then, applying the symmetry property of the convolution integral and
solving equation (4) for the average radial displacement of the cavity
boundary gives

p_(Tu_(t-7)dr  (5)

={g=—y L, S.. i P.(Tu (t-7)dTi)- |
c \Scpc(o)n _anO sn sn ) pC(O)JO c c

In equations (4) and (5) &sn is the velocity ol the ground surface due to an
underground explosion and I.)c is the rate of the pressure change at the

cavity boundary during the explosion.

By examining equation (5) it is observed that the first integral contains
the known functions Pen and {lsn whereas the second integral contains the
known function P and the unknown function u_- It is convenient to separate
each of these two integrals into two parts. The first integral will be
separated into two parts to save computational time and the second inte-
gral into two parts to express u. entirely in terms of known functions,
thereby avoiding the iteration procedure that would be required to solve

for u from equation (5).
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In the first integral in equation (5), it is recognized that the over-

pressure p will be zero until the pressure arrives at station n at the
s

time t Therefore, the lower limit in this integral can be changed

In

fromt=0tot=t Now, in general, the pressure Pep decays rapidly

after the arrival ol? the peak overpressure and then is followed by a more
slowly decaying pulse, especially when these pressures are caused by a
nuclear detonation. Computational time can be reduced by avoiding the
small integration step required to evaluate the contribution from the fast
decay portion by analytically integrating the fast decay portion and then
numerically integrating the remaining portion. By letting €, represent
the duration of the fast decay part of Pop the integral is replaced by an
integral covering the period from 7 = tatoT =t < and another inte-

gral for the period from 7 = t, ¥ e toT =t

The second integral is separated into two parts, covering the period
from T =0 to 7 = At, and from 7T = At to T = t where At represents the
time interval selected for evaluating the cavity displacements. In this
manner, the integral from At to t contains only kno‘wn functions, since
when U is being determined at time t it will be known for all times up
to {t - At). However, the integral from 0 to At contains the time portion

of U that is being determined, so that this integral will require further

examination. After these manipulations, equation (5) is rewritten
as :
1 - rftln+€n
- \ -
uc(t)— Sp (0) -t7sn sn(T)usn(t T) dT
> C n i t
In
"t .
¥ Ssn | psn(T)usn(t - T)dr
Jt. te
In""'n
1 ] fAt . l'—t . ) (6)
c——sr | P(Thu(t-T)dT+  p (Thu (t - T)dT |
pC(O) iJo ¢ ¢ Jag € ¢ |

For sufficiently small € the value of "lsn can be considered constant

during the period t, t (tln + en) and the approximation

G (t-T) O (t-t
n

s sn( ln)
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is made during this period. For this period, the pressure Pen is

approximated by a double exponential decay equation

where A B are constants. If equations (7) and (8) are

s B oa_
sn sn’ “sn’ "sn
substituted into equation (6), the first integral in equation (&) becomes

i s
sn sn sn

!
- (t -t ) tln+€n A e_abxi(T_t111)+B :Bsn(T-tln)d-
" “sn sn In Jl sn sn i
In !
(9)
which upon integration gives
tln%\en
S p (T (t - T)d-
sn sn sn
-t
In
rAqn / —asnﬁnl\ b\sn/ -Bsnin‘\
- : _ s oo o . 1
=S 0l -t ) = e )+ 3 kl e (10)
sn sn

In a similar manner, it is assumed that the cavity pressure p. can
be represented by a double exponential decay equation during the time

interval from 0 to At. Thus, pc istaken as

pT)=A e +B e . 0=T oA (11)

where again :\C. BC. a_- and Bc are constants. Previously, it was pointed
out that when U is being determined at time t. u will be known for the
entire period from 0 to (t - At) so that the last integral in equation (6)
involves an integration of known functions. However, the third integral

in equation (6) concerns that period of time for which u is not yet known.

To circumvent this difficulty and express this integral in terms of the
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values of u, at the beginning and end of time interval 0= T - At, another
approximation is introduced. The approximation is made that the varia-
tion in uc(?) which represents the function uc(t - T) in the interval 0 < T

At can be expressed by the parabola

uc(?):a?a+b?+c ) 0sT=At , T=At-T (12)
1
subjected to the conditions:

at T=0 u(?)ru . (13)

c ci
T=0 G (T)=u . (14)

C ci
T = At u(?):u(t) (15)

C ¢

where Ul s the radial displacement of the cavity at the end of the previous
time interval (t - At) and ilci = the radial velocity of the cavity at the end
of the previous time interval (t - At). By imposing these conditions,

equation (12) becomes

(At - T) + ug (17)
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Then the third integral of equation (6) may be written as

c (At)
Yei jAt Yei A
+—~—pc(0) ) pC(T) dr + —PC(O) pc( t) (18)

where the procedure of integration by parts has been used.

Finally, by introducing equations (10), (11), and (18) into equation (6),

the cavity displacement U becomes

2
u (t)=u.+ix‘.At+ St
ol ‘A -a_At N\ B s o-p At
2i—S e +a At-li+—S ¢ +pB At -1
[ Z ¢ T2 c
Qa }-S \
c ‘ C
T ZSSn\'fASn /1 ~ ;aSn l'l\ sn |Il _ -t sn n\ (t -t )
~{s n SR J|%s In
n c {! sn sn \
N0
& . ['t '
+ p_(Thu_ (t-T)ydr)|- p (Thu (t - 7)dT
Joppe, Pt 1o -
In+ ™ n
LA -a Aty B_ -p.At 'IL
-u_.p{At)-u . —1il -e +— 11 - e (19)
cifc ci a_ |\ B (
- C X , C J
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II. DIGITAL PROGRAM

An IBM 7090 digital program was developed to solve equation (19)
for the cavity radial motion u._- To use this program, the velocity and
pressure data must first be introduced into the computer. Some of the
methods of introducing these data and several other salient points will

be discussed next before presenting computed results.
A. GROUND VELOCITIES flsn

The digital program is so arranged that ground velocity data meas-
ured normal to the ground surface and caused by an underground explosion
arc used. These data are input into the computer in tabular form, that is.
the measured velocities at a discrete set of times. If ground acceleration
or displacement data are recorded during the underground explosion, it
will be necessary to integrate or differentiate such data to derive the
corresponding velocity data before they are introduced into the computer.
Clearly, acceleration data are preferable to displacement data to avoid

any loss of accuracy through the differentiation process,
B. SURFACE PRESSURES Pan

The surface pressures acting on each of the n stations can be intro-
duced into the computer in one of two ways. The first method provides
a means of handling those cases wherc the pressure pulse signature is
completely arbitrary. The second metnhod is restricted to a nuclear sur-
face detonation. This second method of introducing the pressure pulse
data for a nuclear detonation was developed to simplify the input procedure.
This seemed to be a worthwhile simplification because it was anticipated
that most problems to be considered will be those in which the cavity

motion must be determined for a nuclear explosion on the surface,

1. Arbitrary Pressure Pulse

The procedure for introducing the pressure pulse acting at
each of the n stations is identical to that used for the ground velocities.
That is, a tabular listing of the discrete set of times and pressures is
stored in the computer. A slight variation of this procedure can be fol-
lowed when the pressure pulse decays rapidly following the peak pressure,

In this variation, the fast-decay portion is approximated by the double
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decaying -exponential pulse as e>.<press‘ed by equation (8), and a tabular
listing for the remaining time interval. The analytical pressure pulse

1s generated internally in the computer as required during the computa-
tions, once the constants Asn, B ,a ’3511’ and t, are prescribed for

sn sn 1n
each station,

2. Nuclear Pressure Pulse

The overpressure acting at each of the n stations caused
by a nuclear surface detonation is also generated within the computer
once the weapon vield and the distance from ground zero to each of the
n stations are specified. This generated overpressure pulse is an approx-
imation to the theoretical overpressures derived by Brode (Reference 2).
These overpressure pulses were approximated by the double decaying-

exponential equation

TTet, +e  (20)
during the fus=t decay time interval and by

S Tl Te) (e 4e ),
p_(T)= A e sn In nJ+B, e ShL In nJ,t

+ =T
sn sn sn In" n (21)

for the subsequent time period, where ¢ is scl to 0.01 second. The

values of A B ., a t and the corresponding primed param-
sn’ Tsn’ Tsn’ Bsn’ In’ P Ep P

eters are internally evaluated in the computer by fitting the above two

equations to Brode's data for the specified range from ground zeroand for

a nominal yield.

Once the weapon yield W and the distances Rn of each
station n from ground zero are specified, the computer evaluates the

pressures p_ and arrival times t ) by the following steps. First the

Ix
computer evaluates the equivalent distance RE for the nominal yield

weapon W__ at which the same overpressures would be observed using

N
the equation (Reference 11).

1/3
YN

=[N 22
Rp W R (22)
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The value of RE is then used to evaluate the constants Asn‘ B , Qg 6sn‘

for the

sn
the corresponding primed constants and the arrival times (th)n
nominal yield weapon. Finally, the overpressures Pop’ acting on each

station, are computed according to equations (20) and (21) and the arrival

times at these stations from the equation

1/3
N/

C. CAVITY PRESSURE P

The cavity pressure time-history can be introduced into the computer
in one of two ways. Either:

1) Prescribe the constants A/, B/, a/, B¢, and the computer
evaluates the pressure at any time t from the equation

-a 't -B 't

fct i e (24)
C

or

2) Prescribe the constants A., B., ac, PBc., and the computer
evaluates the pressure for the first time interval 0 to At using
equation {11). The cavity pressures following this period
are prescribed by a tabular listing of discrete pressure and
time values.

D. INTEGRATION STEP SIZE

The integration step size can be specified in one of two ways in the
Adams-Moulton, Runge-Kutta method used for numerically integrating
the integrals in equation (19). Either a constant step size can be pre-
scribed, or limits placed on the truncation error allowed in any integra-
tion step. In the latter method, a variable step size is used with the
computer selecting its own step size by comparing the error introduced
at each step with the prescribed allowable error, and then, adjusting the

step size to keep the error within the specified limits.




1II. PROGRAM CHECKOUT
A, BEAM EXAMPLE

The programming of equation (1), and also the steps leading to
equation (19) from the reciprocity relation (1) were verified by computa-
tions for problems in which exact solutions were known or obtainable.
One such problem used for this purpose was the response at some point
of a simply supported beam due to transient loadings applied at three

other points.

c sl s2 s3
A nfin h - | —mn B
1
R2 ]
R3 {
1 |

Figure 1. Beam Geometry

Figure | shows the beam used for this check where the three loading
points are sl, s2, s3 and the response is determined at point c. In order
that this problem can bear some resemblance to the half space problem
to be considered later, the loadings at the three points approximate a
pressure pulse traveling across the beain with different arrival times
and reduced peak pressures at successive points along the beam. The

loadings selectedare shownin figure 2 and are expressed mathematically as

Pg () = P | H(t - t))) - PLH(t - t,) - P oH(t - t)5) - P HIE - t) )

1

Poa(t) = Py Hlt -ty ). PypH(t - ty,) - Py aH(t - ty5) - Py HIt -t ) ~(25)

P 3(t) = Py H(t - t5,) - Py H(t -t

32 - PygH(t -

P34H(t -t

32) ty3) - 34))

where H(t) is the Heaviside unit step function.
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Figure 2. Beam Loadings at Points sl, s2, and s3
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It is found by analysis that these loadings produce a displacementatpoint ¢

given by

3 1 m1h mmR
uc(t) = Y T 3 sin —; sin — Pnl[l - cos wm(t—tnl)]H(t-tnl)

L

n=1 m=1 Mgy
m

8

-Po [1 -cos w (t- tnz)]H(t -to) - Pn3[1 - cosw_(t- tn3)]H(t- t,3)
_Pn4|:l - cos wm(t-tn4)]H(t—tn4)} (26)

Now, to apply equation (19) to find U the velocity at the three
stations must be determined for a known loading at point c. The loading

chosen to be applied at point ¢ is shown in figure 3

o
z
> Poy
g P-
~ c2
\U
< 4
2 Pc3
a o0 -
6( fe2 fe3
- TIME, t, (SECONDS)
Figure 3. Loading at Point ¢
and is expressed mathematically as
pc(t) = PCIH(t - tcl) -PCZH(t - th) - PC3H(t - tc3) (27)

The velocities at points s caused by the loading {—equation (27)] are

found analytically to be

@ \ mh m11'Rn )’”
. < . . . - _
usn(t)~ v sin — sin — [Pcl sin wm(t tcl)H(t tcl)
m=1 m N

sin wm(t - tCZ)H(t - tCZ) - Pc3 sin wm(t- tc3)H(t- tc3} (28)
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forn=1, 2, 3. These velocities were evaluated for the modes m =1 to 7
and are shown in figure 4. The velocity time-history data and the pressure
loadings Pen and ‘pc were introduced into the computer and u, determined

with a constant integration step size of 0. 05 second.

For these computations, the following values were used:

EI 1 R,
__..._.3 = 4 T = 0.7
M 25t
2 R
3 _
w, = 5~ 7 - 08
M =301b/in t ., = O sec P . =141
cl cl
B _025 t. = 20sec P .=81b
1 : c2 . c2
R
T = O. 55 tC3 = 4.5 secC PC3 = 6 lb

The results of these calculations are shown in figure 5 where the value
of the analytical solution of u, was determined from equation (26) by
summing the terms from m = 1 tom = 7. The higher mode contributions
for m =7 for both u, and {lsn were negligible compared to the first seven
mode contributions. Figure 5 shows that the computer solution and the
analytical solution are quite close with the maximum difference about

5 percent. These results suggested that the coding and the manipulation
of equation (1) into the form given by equation {19) were correct, and
therefore, the digital program was then used to investigate the cavity

displacements caused by surface pressure loadings.
B. INTEGRATION STEP SIZE

Several beamn deflection calculations were made to investigate the
effect of the integration step size used in the digital computations. The
step size selected in any given computation depends on the data to be
integrated and the accuracy demanded. The data used in these calculations
are the loading curves shown in figure 2 and the velocity curves shown in
figure 4. It is clear that when the loading and velocity data vary rapidly,

the integration step size must be reduced accordingly provided' these rapid

38




BEAM VELOCITY (INCHES/SECOND)

\ |

0.4 st 52/ s3

Ay

0 2 3 4 5 6
TIME (SECONDS)

Figure 4. Beam Velocities at Points sl, s2, and s3
Due to Loading at Point ¢
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fluctuations are large enough to significantly affect the final results. By
examining figure 4, it is observed that the primary velocity curve has a
rise time of about five seconds while the individual fluctuations have a
minimum rise time of about 0.1 second. The discontinuities in the load-
ing curve shown in figure 2 also give rise to higher frequency fluctuations
(this would be evident if the loading curve is replaced by its Fourier series
expansion), Several calculations were made using various integration step
sizes. Figure 6, which shows thé results for integration step sizes of
0.05 and 0.5 second, indicates that the difference between the two pre-
dicted deflections at t = 5,5 seconds is about 10 percent. Figure 5 shows
that the deflection computed by using 0.05 second step size.agrees fairly
well with the exact deflection, so that the integration step size of 0,05
second is entirely satisfactory, and even the 0.5 second step size is

probably adequate in this problem.

IV. CAVITY DISPLACEMENT CALCULATIONS

To compute the average cavity radial displacement caused by a pre-
scribed pressure acting on the ground surface, it is necessary to know
the ground motions caused by a known underground cavity pressure load-
ing. The most nearly complete ground motion data that could be found
were ground velocity measurements obtained during the Rainier shot in
the PLUMBBOB series (Reference 22)., These data consist of seven
surface measurements that are nearly on one radial line extending from
surface ground zero out to a distance of 2340 feet. Figures 7 and 8 show
these data for the stations at distances of 0, 450, 650, 900, 1270, 1730,
and 2340 feet from surface ground zero. The cavity pressures that gave
rise to these ground motions were not recorded during the test and there-
fore, a pressure pulse must be assumed. Reference 14 indicates that
the cavity radius before the shot was 3 feet and after the explosion, the
crushed radios before collapse was 55 feet. For the calculations
which follow an effective radius of 10 feet will be assumed. For
this radius, the cavity area SC is 1200 square feet. Figure 8 in
Reference 14 shows the theoretical peak pressure inside the cavity as
a function of cavity radius. For the cavity radius of 10 feet, the peak

pressure is about 100, 000 atmospheres. In the following calculations,
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Figure 6. Comparison of Calculated Beam Deflection Using
Two Integration Step Sizes
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it is assumed that the pressure pulse has a zero rise time to the maximum
pressure and then decays exponentially as described by equation (24). One

pressure pulse used for many of the calculations to follow was taken as

p_ = 75,000 ¢ t+ 25,000 e
With these ground velocity data and cavity pressure pulse, the average
cavity response was computed for a nuclear surface detonation at one of
two locations. These two cases are called the direct-hit and nondirect-

hit examples.
A. DIRECT-HIT EXAMPLE

For the direct-hit example, it is assumed that a nuclear detonation
occurs on the surface with its ground zero coinciding with the surface
ground zero for the underground detonation. Brode's theoretical over-
pressures {Reference 2) are used for the overpressures acting on each
of the ground stations, and are axisymmetrical about the ground zero

location.

1. Ground Surface Stations

It is assumed that the medium is isotropic and homogeneous so
that the recorded velocities during the underground explosion would have
been the same if they had been measured along any other radial line from
surface ground zero. Since both the ground pressures Py and ground
velocities izs are symmetric about ground zero, the surface areas used
in the solution of equation (19) are the ring shaped areas around ground

zero indicated in figure 9. These surface areas are listed in table 1.

Table 1. Station Areas in the Direct-Hit
Example Using 7 Stations

Station Area
n ft2

159. 4

791, 300
936, 600
1,811,000
3,370,000
5,941, 000
14,330, 000

N O s W N —
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Figure 9. Lumped Stations for the Direct-Hit Example
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2. Ground Overpressures

Since Brode's theoretical overpressure is infinite at ground zero,
the first ground station was arbitrarily moved out to a point 150 feet from
ground zero. The overpressure used at this first station is that corre-
sponding to Brode's overpressure at a range of 150 feet, whereas the
ground velocity used there is the actual velocity recorded at surface
ground zero. Theoverpressure data for the fastdecayportionwere com-
puted from equation (20) using the values listed in table 2, For the re-
maining period, the overpressures were input into computer in tabular
form by reading overpressure and time values from the overpressures

shown in figure 10.
Table 2. Overpressure Constants Used in equation (20)

A B a B t.

Station sn sn sn 1 sn_, In
n atmos atmos sec sec sec
1 97, 500 2500 6000 250 0.01
2 2,600 800 1500 195 0.007
3 900 200 520 200 0.0035
4 320 80 420 25 0.0045
5 120 10 120 20 0.01
6 10 19 70 10 0.02
7 17 7. 4 31 5 0.076
3. Influence of Cavity Pressure Signature .

Since there is considerable uncertainty in the cavity pressure
pulse, calculations were made using various pressure pulses so that the
influence of the cavity pressure signature could be observed. The basic
pressure pulse is taken as that expressed in equation (29). Other pulses

are selected arbitrarily subject to the constraint condition.

o
f pC(T) dT = constant
o

Figure 12 shows the computed average cavity displacements caused by the
nuclear explosion on Station 1 for the five cavity pressures shown in

figure 11.
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Figure 11. Typical Cavity Pressures Used in the Calculations
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for the Five Cavity Pressures Shown in Figure 11
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4, Influence of Ground Surface Stations

In order to estimate the effect of using a fewer number of stations
while computing cavity displacements, calculations were made using every
other station shown in figure 9, i.e., stations 1, 3, 5, and 7. The adjusted

surface areas for this case are shown in table 3,

Table 3. Station Areas for the Direct-Hit
Example Using Four Stations

Station Area
n 103 ft2
1 332
3 2,560
5 7,340
7 15, 700

The results of these calculations are shown in figure 13 where the Poy
curve given by equation (29) was again used. In figure 13 it is noted that
this four-station lumping predicts a larger cavity motion. This is pri-
marily a consequence of the increased area used for station 1 in the four-

station computations.

Figures 14 and 15 show the results of another set of calculations
made to investigate the influence of each surface station. These curves
were computed by using all seven stations shown in figure 9. Each curve
on figures 14 and 15 shows the cavity motion caused by the overpressures
acting on each of the seven stations individually. For example, figure 14
shows that the maximum cavity displacement caused by the overpressure
acting on station 1 alone is -0. 75 foot, whereas figure 12 shows the maxi-
mum to be -1.21 feet when the properly phased contributions from all

seven stations are considered.
B. NONDIRECT-HIT EXAMPLE

The nondirect-hit example is defined as one in which the location of
the surface nuclear detonation does not coincide with the surface ground
zero for the underground explosion. In this example, it is assumed that
a surface burst having the same yield as in the direct-hit example takes

place at a point 1880 feet from surface ground zero. Once again, Brode's
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Figure 13. Comparison of Cavity Displacements Using Four
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theoretical overpressures are used for the Pen data and the Rainier
ground velocities for the usn data. The cavity pressure signature used

is given by equation (29) and denoted by Poy

For these calculations, the 38 stations shown in figure 16 are used.
Note that even though the surface overpressure has symmetry about ground
zero for the surface detonation and the ground velocities have symmetry
about the surface ground zero for the underground explosion, the products
of the overpressures and velocities only have symmetry about the line
passing through the two ground zero locations, Thus, when full advantage
is taken of this symmetry, the cavity motion caused by the surface pres-
sures acting on all 38 stations can be determined by using the 26 stations
1, la, 1lb,..., 20, and2]1. However, this is considerably more than was
required for the direct-hit example. Table 4 lists the geometrical data
required in these calculations. Shown in the table are the areas of each
of the different 26 stations, the distance from surface ground zero for
the underground explosion to the respective station, and the distance from

the surface burst to each station.

The cavity-displacement calculations made using the above data are
summarized in figures 17 to 21 in the form of influence curves. That
is, each curve shows the cavity motion caused by the overpressure acting
on each of the stations individually. The total cavity motion caused by
the pressures acting on all the stations is obtained from the sum of these

individual curves.

These figures can be used to compare the relative importance of
those stations where the surface pressures are the largest with those
where the ground velocities are the largest. For example, compare the
effect of station 2 where the surface explosion acts with that of the four
stations around surface ground zero for the underground explosion. Even
though table 4 shows that the area of station 2 is approximately equal to
the total area of the four stations, figures 17, 18, and 19 show that the
effect of station 2 is about twice as large as the combined effect of the four
stations surrounding surface ground zero. Thus in this example the larg-
est contribution to the cavity displacements comes from the stations

around ground zero where the ground overpressures are the largest.
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Figure 16.

Lumped Stations for the Nondirect-Hit Example

X = surface burst ground zero

®

underground explosion ground zero
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Table 4.

Station
No.
1
la
lb
2
2a

Geometrical Parameters for the Nondirect-Hit Example

Station
Area

ﬁz x 103

398
597
995
165
248
413
281
281
453
234
198
39.8
39.8
198
234
453
843
1485
3582
39.8
198
234
453
843
1485
3582

Distance From
Underground
Explosion
Ground Zero (ft)

2340
2340
2340
1730
1730
1730
1270
1270
900
650
450
150
150
450
650
900
1270
1730
2340
150
450
650
900
1270
1730
2340
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Distance From
Surface Burst
Ground Zero (ft)

460

660
1270

150

415
1030

610
1010

980
1230
1430
1730
2030
2330
2530
2780
3150
3610
4220
1880
1930
1990
2080
22170
2560
3010
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V. COMPARISON OF CAVITY AVERAGE
DISPLACEMENT AND DISTORTION

Even though the average cavity displacement caused by a specified
nuclear burst on the surface is of vital interest, cavity distortions are
also important. The numerical procedure used in the examples only
predicts the average cavity displacement. This section examines a
theoretical problem in which the average displacement and distortion
are computed to investigate the relative magnitude's of each of these
types of displacements. The calculations of average displacement and
distortion and also rigid-body translation, are determined from some
published results of Baron and Parnes (Reference 6}. Baron and Parnes
find the motion of a cylindrical cavity during.the passage of a plane com-
pressional wave. They assume that the medium is homogeneous, iso-
tropic, and elastic with a Poisson's ratio of 1/4 which corresponds to
a granite-rock medium. The plane compressional wave front has a step
distribution in time and propagates at the constant velocity of the dilata-
tional waves °p in a direction normal to the generators of the cylindrical
cavity, Figure 22 shows the geometrical relations and the points on the

cylinder surface where the radial displacements are computed.,

The average and distortional radial displacements of points on the
cylindrical surface are derived from the data shown in Reference 6.
Figures 7 and 8 of Reference 6 show the radial and tangential velocities
as functions of time in terms of nondimensional coordinates (v'vp/o-ép and
vi/oc_ versus c_t/2a) for the twelve points around the cavity 01 =0,
6, = £22.5°, 8, = #45°, 0, = £67.5°, 6. = #90°, o, = *135°, and 6, = 180°.
In these plots w and v represent the radial and tangential velocities re-
spectively, ¢ the stress intensity of the incoming wave, c_ the propagation
velocity of the incoming waves, p the shear modulus of the medium,

t the time, and a the cavity radius. The radial velocity data have been

reproduced and are shown in figure 23 of this report.

Let UC and VC represent the nondimensional radial and tangential
displacements and let these displacements be represented by the Fourier
expansions

[o 0]
U_(6, t) =a (t) + nz=1 a_(t) cos n8 (30)
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%)
VC(G, t) = ngl bn(t) sin nb (31)

In this notation, the nondimensional average and distortional radial dis-
placements and rigid-body translations in the radial direction can be

written as

average radial displacement = ao(t) (32)
al(t) - bl(t)
rigid-body radial translation = 5 cos 6 (33)
al(t) -bl(‘t)
distortional radial displacement = U _(8,t) - a _(t) - —————cos 8 (34)

The average radial displacement is evaluated by numerically integrating
the data in figure 23, to obtain the UC(G, t) shown in figure 24. Then,

ao(t) is evaluated by numerically integrating the following equation
1 ™
a (t) == f UC(G,t) de (35)

and is shown in figure 25.

The rigid-body radial translation is computed from equation (33) by

using the values of (a, - bl)/Z presented in figure 10 of Reference 6,

Finally, the radial di;tortional displacements are calculated from egua-
tion (34) and these results are presented in figures 26 and 27. Comparing
figures 25 and 26, it is noted that the average and the maximum distor-
tional radial displacements, which occur on 6 = 0, have about the same

magnitude.
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APPENDIX

RECIPROCITY RELATIONS IN ELASTIC AND
VISCOELASTIC WAVE PROPAGATION
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I. SUMMARY

By a slight extension of Graffi's proof of the reciprocity relations
in dynamics, it is pointed out that dynamic reciprocity applies as well

to viscoelastic media and also to traveling loads.

II. INTRODUCTION .

The most general reciprocal theorem in dynamics was asserted by
Horace Lamb (Reference 16) to be derivable from a remarkable formula -
established by Lagrange in the "Me/ca.nique Analytique" (1809) by way of
a prelude to his theory of the variation of arbitrary constants. Lamb
showed how the reciprocal theorems of von Helmholtz in the theory of
least action in acoustics and opt@cs and of Lord Rayleigh in acoustics,
can be derived from Lagrange's formula, Rayleigh (Reference 21) extends
the reciprocal theorem to include the action of dissipative forces and
Lamb shows the complete reciprocity relationship in a moving fluid with
reversed flow conditions. These theorems are best stated and proved in

terms of generalized coordinates.

In the theory of static elasticity, a well known reciprocal theorem
is associated with the names of Maxwell, Betti, and Rayleigh, A generali- .
zation of this theorem to dynamic problems in elasticity is given by Graffi
(References 12 and 13), and certain applications of Graffi's results to the
problem of elastic wave propagation, in particular, of the reciprocity ;
between certain results of Pekeris' problem (Reference 19) of a suddenly
applied vertical load and Chao's problem (Reference 7) of a suddenly
applied horizontal load, was pointed out by Di Maggio and Bleich (Refer-
ence 9). However, there seems to have been no mention in the literature
about reciprocity relations that hold for traveling loads. It is the purpose
of this Appendix to state such a relationship, to extend it to viscoelastic

media, and to demonstrate some interesting applications.
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111, DERIVATION OF EQUATIONS

Consider a linear isotropic viscoelastic medium, which is described

by the stress-strain relationship (in the usual tensor notations)

N q® g " N dn
Z a —— o, = b — 5., + ¢ —Jfu. . +u, .| (1)
nTo att) Y n=o ™ at" ik u nzo n g 1) )1

where O-ij is the stress tensor, ug is the displacement vector, an, b, c
n’ n

are constants if the medium is homogeneous, and are functions of space

coordinates if the medium is nonhomogeneous. If N = 0, the material

obeys Hooke's law and the above relationship is written
_— . o oo 2
61_] )\uk,kél_] + p(ul,J + uJ, 1) (2)
where N\, y are the Lame constants which may depend on space coordinates,
1 Xi is the body force per unit mass, the equation of motion is
2

i
p—z—sz.+<r.. . (3)
dt ! 1]

If the material occupies a finite volume V with a boundary surface
S = SO_ + Su’ surface traction being specified over SO_ and displacement

being specified over Su’ the boundary conditions that must be satisfied are

v
og..n, =T, on S
ij7j i o
u, = w, on S (4)
i i u

where nj is the direction cosine of the normal v of S. Let us consider

12
problems in which Xi (xl, X5y X35 t),Ti (xl, Xy, Xg3; t), and wi(xl, X5, Xy t)
are given functions of space and time, which starts its action at t >0,

under the initial conditions

dui dNui
u Ty e dtN 0 whent =0 (5)
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The response ug (xl, X, X3 t}) is sought. To this end, we apply Laplace
transformation with respect to the time t to every dependent variable
under the assumption of suitable continuity conditions so that the trans-

forms exist. Let the Laplace transform of u be written as u
u = i{u(t)‘ sj: i e_Stu(t) dt (6)

We have, on account of the initial conditions named above

o T Mshy byt mls)yy () W

s pu; = pzi + Eij,j in V
(7)
v

g..n, = T on S
—ijj T = o

u, = w, on S

=i —i u P,

where
Ms) = z bnsn/Z ansn , mls) = Z Cnsn/Z ansn (8)

When the mathematical problem is solved for Uy (xl, Xy, Xgi s), the
inverse transform must be performed in order to obtain the desired

solution u (xl, X5y Xy t).

Now consider two problems in which the applied body force and the
surface tractions and displacements are differently specified. Let the
variables involved in these two problems be distinguished by superscripts.,
Then

2

InV : s p&i(l) = p3<_i(1) + L(JI)J (9a) sngi(z) = p_)_(i(z) + E(ijz,)j (10a)

On S : cr(lrl = '1‘7/.(1) (9b) U(ZI)L = ';.(2) (10b)
o —jj =i =ij ) —i

On S : u.(l) = w.(l) (9¢) u.(Z) = w.(‘z) (10c)
u —1 —1 —1 ——]
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i(Z) and (10a) by Ei(l)’ subtracting, and

integrating over the volume V, we obtain

[ oxthulPlay s [ o) u@lay = [ oxl@ulVav s [ B ay )
y ! N L vy 1 N

-1

Multiplying equation (9a) by u

Now .
[ @)y, (1) (2) (0, (D) (2)
Jv-“ii’igi & Jv[(x—‘kkéij)’#i *(“Ei.f“ﬂj,i)’#i JIdV

‘( )\uil)ké..u(.z)n.ds - )\u“) 6..u(.2}dv
g K k=i T v —k, k7ij~i, ]

-"j pu(.l?u(.z?dv -f pu(.l?u(.z?dv (12)
vy —hi=h ) v i
A similar expression is obtained for the integral
%) Dy (13)
vy J=i

When these expressions are substituted into equation (11}, we see that
a number of volume integrals cancel each other. The surface integrals

contributed by the integrals (12) and (13) to (11) are

f )\u(l) u(z)n.ds +qu(.1?u(.2)n.ds +jpu(.1?u(.2)n.ds
i s = g i T

S —k, k—i i, j—i j
= )\u(z) u(.])n.ds + pu(.z?u(.l)n.ds + p.u(.z?u(.l)n.ds (14)
S ~k, k=1 i g L1 g i1 )
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or

U(..l)ugz)n.ds = jcr(.;)u(.l)n.ds (14a)
g 171 s U 1

1f we now recall the definitions of Scr and Su’ and the boundary conditions
(9b), (9c), (10b), (10c), and substituting all these into equation (11), we
obtain finally

pr(.l)u(.Z)dv+f 'f'(.l)u(.z)ds+f o-(..l)w(.z)n.ds
y —i =i g —i —i g —i =i

o cu

- -1 =

=[pX(.Z)u(.l)dv+f 742Dy +f Bty s (15)
v —1 S s 1) —1 J

This is a general reciprocal relation in the Laplace transformation form.

It is of the same form as Betti's reciprocal relation in elastostatics.

Since the inverse transform of the product of two functions is the

convolution of the inverses, we obtain

i

t t
f fp(x)x(.”(x,t-nu(“(x, T)dev+f le"(.”(x,:-f)u(.z)(x, r)drds
V o0 1 Sor o * t

t
+ j J U(..l)(x, t- ‘r)w(.z)(x, T)n.dTds
s Jo M . J
u

o

t rt
=J J o(x)x %), £ - Tl Vix, T)dev+J' J';‘.Z)(x.t-ﬂu(”(x, r)drds
V 1 1 S o 1 1
o

t
(2) (1)
+IS J; (Tij (x,t—“r)wi (x, "r)njd‘rds (16)
u

This is the general reciprocal theorem for elasto-kinetics, Whether the
material is viscoelastic or purely elastic makes no difference in the final
result. Note that this result holds for variable density p(xl, X5, x3) and

nonhomogeneous material properties.
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IV, GENERALIZATION TO INFINITE REGION

A generalization of the above result to an infinite or semi-infinite
region is possible. Since a finite wave speed exists there always exists
a boundary surface at any finite t =0 which is yet uninfluenced by the
loading initiated at t = 0. Let Su be such a surface. Then w, = 0 on Su

and the remainder of the equation holds without question.

V. SPECIFICATION AND APPLICATIONS

Space-time Separable Body Forces, Surface Tractions, and Displacements

1f
X(il) :(il)(x)g(t) x(iz) :E(iz)(x)g(t)
v v
T = pMaggy T = pPgi)
Wi wliggn) wi?) = wiiogq)

then equation (15) can be written, on cancelling af{g(t)} from everyterm, as

o e [Reae e WP legas
i Yy s i s i =) )

”
a u

:f pS(.Z)E_(.l)dv+j P(.Z)E(.l)ds+f W(.l)g_(..z)n.ds
y —i o g i i g b =i ]

o u
The inverse transformation gives

‘ Y
o=t bay +f PGBy tyas +f witlol Do, tmgas = 1
v s ! s, =" !
u

3 1

or

(1) (2) Y(1) (2) (2) (1) - \?2
JVpXi (x,t)ui (x,t)dv +fs Ti (x,t)ui (x,t)ds +js w, (x,t)o’ij (x,t)njds—l\'
o u
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\ . .
where 1\2~ indicates the same expression as on the left-hand side except

that the superscripts (1) and (2) are interchanged. Graffi's well-known
formula results if w(il), \vgz) =0 on Su'

Forces Applied at Different Times

Graffi also gives the following case. If

=T W gg(e - 1)) x(¢) = T g - 1)
v Vv

T(il) = P Mgt - T)) T(iz‘) - P(l Vx)a(t - T,)
w(il) = 0 w(iz) = 0

then equation (15) becomes, on cancelling & {g(t) |s>,

r -sT I -sT ~
J pS“)e 1u.(.'z)dv-'r ,' P(.l)e 1\.1(.2)615 = 1%
v i =i ; i i

JSO_

Concentrated Forces

If the loading consists of concentrated loads f(il) and f§2)
points P)» Py respectively, we may consider pEi or Pi as suitable delta

acting at

function and obtain at once

SRUCIINCUTII S

1 (p,)ulNip, .t - T,)
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Py )“(12)

(1)

i

£

1

(2)
(pyst) = £ (p,)ui ip,, )
This is the extension of the conventional elastostatic Betti-Rayleigh

reciprocal relation to kinetics,

Impulsive and Traveling Concentrated Forces

Let an impulsive concentrated force act at a point P,

and a concentrated force f(iz‘) be applied at the origin at t = 0 and thereafter

moved along the x, axis at uniform speed U

1

X

ox(2) - fg%( : Fl)&(xzm(x})

No cther surface loading or displacement is imposed. Then equation (16)

gives

f(l‘)u(.z‘)(pl, t)

i i

3 U

crr ot X
= f(iZ)j J[J 6(x2)6(x3)dx1dx2dx )'O 6( - —I-)u(il)(xl,xz,x3, t - T)dT

and therefore

X
r

1
(1) (2) _ A2y U *1
fi ug (pl,t:)—fi j_m ui(xl,O,O,t-—G—)dxl

I u(il) [xl, 0,0,t - (xl/U)] is known, then u(iz) (pl, t) can be found from
the above equation.

Suddenly Started Line Load Over an Elastic Half-Space

The steady-state solution of the problem of a line load traveling at
constant speed over an elastic half-space (a two-dimensional problem)

was first solved by Sneddon {Reference 20) and later by Cole and Huth
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(Reference 8) by means of Fourier transformation and by analytic functions

of a complex variable. A singularity was found if the load travels at the
Rayleigh wave speed of the medium. To examine this singularity Ang
(Reference 1) considered the problem of suddenly started line load. Now
according to the reciprocal theorem Ang's problem can be solved by one
integration of the solution of Lamb's problem: the impulsive loading at
one point (not traveling) inside a two-dimensional half-space. Only the

surface displacement due to the point loading needs to be known.

o— U
77777777777 77777777777

NEACY0 f (s (x-un

LAMB'S PROBLEM ANG'S PROBLEM

Figure 1. Illustration of the Loading in Lamb's
and Ang's Problems

Suddenly Started Point l.oad Over an Elastic Half-Space

The corresponding three-dimensional problem of a concentrated load -
suddenly applied at a point on the surface of an elastic half-space and
thereafter moved at a constant velocity U in the x-direction has not yet
been solved. However, from the reciprocal theorem named about, it
becomes apparent that the solution to this problem can be obtained by an
integration of Pekeris' solution to a suddenly applied vertical load and
Chao's solution to a suddenly applied horizontal load at a given point in

an elastic half-space,.
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